Rotational (and Other) Representations of Stochastic Matrices
نویسندگان
چکیده
Joel E. Cohen (1981) conjectured that any stochastic matrix P = fpi;jg could be represented by some circle rotation f in the following sense: For some partition fSig of the circle into sets consisting of nite unions of arcs, we have (*) pi;j = (f (Si) \ Sj) = (Si), where denotes arc length. In this paper we show how cycle decomposition techniques originally used (Alpern, 1983) to establish Cohens conjecture can be extended to give a short simple proof of the Coding Theorem, that any mixing (that is, P > 0 for some N) stochastic matrix P can be represented (in the sense of * but with Si merely measurable) by any aperiodic measure preserving bijection (automorphism) of a Lesbesgue probability space. Representations by pointwise and setwise periodic automorphisms are also established. While this paper is largely expository, all the proofs, and some of the results, are new. Keywords: rotational representation, stochastic matrix, cycle decomposition MSC 2000 subject classi cations. Primary: 60J10. Secondary: 15A51
منابع مشابه
Automatic formulation of falling multiple flexible-link robotic manipulators using 3×3 rotational matrices
In this paper, the effect of normal impact on the mathematical modeling of flexible multiple links is investigated. The response of such a system can be fully determined by two distinct solution procedures. Highly nonlinear differential equations are exploited to model the falling phase of the system prior to normal impact; and algebraic equations are used to model the normal collision of this ...
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF SUZtTKI GROUP
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fai...
متن کاملComputational method based on triangular operational matrices for solving nonlinear stochastic differential equations
In this article, a new numerical method based on triangular functions for solving nonlinear stochastic differential equations is presented. For this, the stochastic operational matrix of triangular functions for It^{o} integral are determined. Computation of presented method is very simple and attractive. In addition, convergence analysis and numerical examples that illustrate accuracy and eff...
متن کاملGeneralized Drazin inverse of certain block matrices in Banach algebras
Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.
متن کامل